
Bu sınav için değerlendirime 40 puan üzerinden yapılacaktır.

SORULAR

1. **(7,5 puan)** $\phi \neq A \subseteq (0, \infty)$ ise $\inf A = \beta > 0$ ise $\sup \left\{ \frac{1}{x} : x \in A \right\} = \frac{1}{\beta}$ olduğunu kanıtlamak için aşağıdaki önermelerdeki boşlukları tamamlayınız.

 $C = \left\{ \frac{1}{x} : x \in A \right\}$ koyalım. $\phi \neq A \subseteq (0, \infty)$ olduğundan $C \neq \emptyset$ ve C de hiç olmazsa bir pozitif eleman vardır. $\inf A = \beta > 0$ olduğundan her $x \in A$ için

 $$0 < \leq$$

 dir. O halde ters çevirecek olursak

 $$0 < \frac{1}{.................} \leq \frac{1}{.........}$$

 elde edilir. O halde $\frac{1}{\gamma}$ sayısı C kümesinin bir üst sınırır. C boş olmadığından ve $......................$ olduğundan $\gamma = \sup C$ vardır. C de hiç olmazsa bir pozitif eleman olduğundan $0 < \gamma$ dir. Ayrıca $\frac{1}{\gamma}$ sayısı C kümesinin bir üst sınırı olduğundan

 $$...................... \leq \frac{1}{..........}$$

 dir. Simdi her $x \in A$ için

 $$\frac{1}{x} \leq \sup C = \gamma$$ dolayısıyla $\frac{1}{\gamma} \leq x$

 dir. O halde O halde $\frac{1}{\gamma}$ sayısı A kümesinin bir $......................$ sınırıdır. $\inf A = \beta$ olduğundan

 $$\frac{1}{.........} \leq$$

 dolayısıyla $\frac{1}{.................} \leq$ (1)

 olur. O halde (1) ve (2) den dolayı

 $$\frac{1}{\beta} = \gamma$$

 dir.

2. **(5,5 puan)** (x_n) dizisinin tüm terimleri pozitif olsun ve her $n \in \mathbb{N}$ için

 $$x_{n+1} - x_n \leq \frac{1}{n} - \frac{1}{n+1}$$

 koşulunu sağlasın. (x_n) dizisinin yakışık olduğunu gösteriniz. ($n \in \mathbb{N}$ olusun. $y_n = x_n + \frac{1}{n}$ dizisini göz önünde alınınız.)
3. $n \in \mathbb{N}$ ve $0 < x$ ise $1 + nx \leq (1 + x)^n$ olduğunu biliyoruz. Aşağıdaki önermeleri kanıtlayınız.

(a) (4 puan) $\sqrt{n} < \left(1 + \frac{1}{\sqrt{n}}\right)^n$ dir.

(b) (4 puan) $1 \leq \sqrt{n} \leq 1 + \frac{2}{\sqrt{n}} + \frac{1}{n}$ dir. (a) da her iki taraf karesini alınız.)

(c) (3 puan) $\lim_{n \to \infty} \sqrt{n} = 1$ dir.

4. (5 puan) Aşağıdaki teoremler deki boşlukları doldurunuz.

(a) (Artan diziler için Monoton Yakınsaklık) (x_n) monoton artan bir dizi olsun ve ise (x_n) ve $\lim x_n = \{x_n : n \in \mathbb{N}\}$ dir.

(b) (Bolzano-Weirstrass) (x_n) bir dizi ise (x_n) nin bir vardır.

(c) (Cauchy Kriteri) Bir (x_n) dizisinin olması için gerek ve yeter koşul (x_n) nin bir dizisi olmasdır.

5. (x_n) dizisi

$$x_1 = 0 \text{ ve } n \geq 1 \text{ için } x_{n+1} = \frac{2 + x_n}{3 + x_n}$$

olarak tanımlanan dizi olsun. Aşağıdaki önermeleri kanıtlayınız.

(a) (4 puan) $0 \leq x < y$ ise $\frac{2 + x}{3 + x} < \frac{2 + y}{3 + y}$ dir.

(b) (4 puan) Her $n \in \mathbb{N}$ için $0 \leq x_n < x_{n+1}$ dir. (Tümevarımda n den $n + 1$ e geçerken (a) da $x = x_n$, $y = x_{n+1}$ alınız.)

(c) (3 puan) Her $n \in \mathbb{N}$ için $x_n < 1$ dir.